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Abstract 

Results of high-energy non-resonant magnetic X-ray 
diffraction experiments performed on the model system 
MnF 2 at a photon energy of 80 keV are presented. A 
surprisingly high peak intensity of the magnetic 300 
reflection of 13 000 photons s -1 in the three-crystal 
mode and 19 000 photons s -1 in the two-crystal mode, 
with a peak-to-background ratio of 230:1 and 10:1, 
respectively, has been achieved. At 80keV, the 
penetration depth is 7mm. When the path length of 
the beam through the crystal is varied, the effect of 
volume enhancement of the intensity diffracted by 
magnetic reflections is demonstrated. The Q depen- 
dence of the magnetic and the charge Bragg reflections 
has been measured and agrees well with theory. The 
measurement of the temperature dependence of the 
sublattice magnetization allows a very accurate deter- 
mination of the critical exponent/~ = 0.333 (3) and the 
N6el temperature T N = 67.713 (2) K. Finally, the multi- 
ple charge scattering is discussed, which is very 
pronounced for the magnetic reflections of MnF 2. 

1. Introduction 

We have reported a study of non-resonant magnetic 
X-ray diffraction from MnF 2 for photon energies 
between 5 and 12 keV in the preceding paper, hereafter 
referred to as paper 1 (Briickel et al., 1996), where the 
model system MnF 2 and the X-ray scattering cross 
section are discussed in detail. 

While most X-ray diffraction studies of magnetic 
materials nowadays make use of resonant exchange 
scattering, we pointed out in the Introduction to paper 1 
that it is important to develop techniques for non- 
resonant X-ray scattering, mainly because resonance 
enhancements at the K edges of 3d and 4d transition 
metals are very small. In this paper, we present an 
alternative approach to obtain higher diffracted inten- 
sities, namely the volume enhancement due to an 
increase of the penetration depth by using very hard 
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X-rays with energies above 80keV. Clearly, the 
penetration depth is larger for lighter elements (transi- 
tion-metal compounds as compared to lanthanides and 
actinides). Therefore, this new technique complements 
resonant exchange scattering at its best. We also want to 
point out some further advantages of high-energy 
diffraction: simple windowless sample environment; 
sensitivity to true bulk properties; very high intrinsic 
Q-space resolution; extinction-free precision measure- 
ment of magnetic structure factors owing to the short 
wavelength and the small cross section; enhancement of 
weak signals relative to charge reflections owing to 
large scattering volumes; neutron and photon measure- 
ments of bulk properties from the same crystal. 

The development of magnetic X-ray scattering and 
the possibility of using high-energy X-rays to study 
magnetic materials is closely correlated to the advance- 
ment of X-ray sources. For medium-energy X-ray 
diffraction with penetration depths of a few lam, only a 
near-surface region is accessible as discussed in paper 
1, while neutrons are scattered from the bulk of the 
sample. In recent years, harder X-rays have become 
available with high photon fluxes. In this paper, 
measurements on MnF 2 using X-rays with a wavelength 
of 2 = 0.155A corresponding to a photon energy of 
80keV are presented. The absorption length is about 
1//z -- 7 mm. Therefore, we observe scattering by the 
bulk material as is the case in neutron scattering. This is 
especially important for the study of magnetically 
disordered materials. As was shown for the random 
field magnet Mn0.75Zn0.25F 2 (Hill, Feng, Birgeneau & 
Thurston, 1993), surface preparation affects drastically 
the magnetic properties in a near-surface region since 
domains are pinned to surface defects, like scratches. 
While this is a rather interesting phenomenon, the 
intrinsic disorder effects can safely be studied only with 
a true bulk probe. Moreover, if the X-ray energy is 
varied from 8 to 100 keV and thus the path length of the 
beam through the crystal, it will be possible to 
distinguish near-surface and bulk properties. The 
Q-space resolution obtained with a triple-crystal 
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diffractometer is about one order of magnitude higher 
than for high-resolution neutron diffraction (Neumann, 
Riitt, Bouchard, Schneider & Nagasawa, 1994). For a 
detailed discussion of the general aspects of high-energy 
synchrotron-radiation experiments as a probe to study 
condensed matter, we refer to Schneider (1995). 

Information on the spin-density distribution in the 
lattice can be obtained from the X-ray intensities of the 
magnetic reflections and the studies presented below are 
first steps towards such spin-density measurements. 
Note that X-rays with energies around 100keV are 
sensitive to the spin moments only, as shown in §2. This 
complements neutron diffraction, where the sum 2S + L 
of spin and orbital angular momentum is measured. By 
the combination of the results of measurements from the 
same crystal obtained with the two techniques, a 
separate determination of spin and orbital angular 
momentum should be possible. 

The paper is organized as follows: In §2, we discuss 
the magnetic cross section for high-energy X-rays, to 
the extent that it differs from that for medium X-ray 
energies. In §3, the experimental set-up is presented. §4 
contains a discussion of multiple scattering caused by 
Umweganregung and in §5 the results of the measure- 
ments are presented. A discussion of these results is 
given in §6. In §7, we give a short summary and 
conclusions. 

2. The magnetic cross section for high-energy X-rays 

Photon-electron scattering is in general a relativistic 
process and the scattering cross section should be 
calculated in a complete relativistic quantum-electro- 
dynamic framework to take into account all effects 
arising from the coupling of the quantized photon field 
and the Dirac field of the electrons. 

Blume (1985) and Blume & Gibbs (1988) calculated 
the cross section for X-ray scattering including the 
magnetic terms from a non-relativistic Hamiltonian for 
electrons in a quantized electromagnetic field within 
second-order perturbation theory. The quasirelativistic 
formulation starts out from the Dirac Hamiltonian for 
an electron in an electromagnetic field. ;then, the 
Fouldy-Wouthuysen transformation is applied to allow 
an interpretation in a non-relativistic form analogous to 
that obtained from the non-relativistic Hamiltonian 
(Platzman & Tzoar, 1970; de Bergevin & Brunel, 
1981; Grotch, Kazes, Bhatt & Owen, 1983). The 
expansion of the transformed Hamiltonian depending on 
photon energy over electron rest mass hog/mc 2 allows 
the description of the magnetic scattering process. 
Grotch, Kazes, Bhatt & Owen (1983) extended the 
Fouldy-Wouthuysen transformation to second order in 
hw/mc 2. The dominating contribution to magnetic 
scattering is given by the first-order term. While the 
second-order term is ser~sitive to charge scattering only, 
the next magnetic contribution in the expansion is 

expected from the third-order term. The strongest 
magnetic contribution stems from the first-order term 
and its interference term with charge scattering. The 
next-strongest magnetic contribution arises from the 
interference term between charge scattering and the 
third-order magnetic scattering. These interference 
terms are difficult to observe for antiferromagnets and 
in what follows we limit our discussion to the case of 
purely antiferromagnetic reflections, where the charge 
contribution vanishes. Possible applications of the 
interference terms for ferromagnetic materials are 
discussed by Briickel et al. (1993). In addition, for 
photons of energy h w <  100keV, the third-order 
contribution to the cross section, being the next 
magnetic contribution, is reduced by a factor 1/25 as 
compared to the first-order contribution (Lippert, 
Brtickel, K6hler & Schneider, 1994). Therefore, these 
higher-order terms can be neglected in diffraction 
experiments with high-energy photons up to 100keV. 
If the photon energy approaches the rest mass of the 
electron, mc 2 --511 keV, hw/mc 2 is no longer an 
appropriate expansion coefficient. In this case, a full 
relativistic treatment of the coherent magnetic scattering 
of X-rays is needed. 

For the energy used for the experiments presented in 
this paper, the above expansion up to first order in 
hw/mc 2 is valid to a very good approximation. Then, 
the scattering cross section for a transition from initial 
photon polarization state e to final state e' is given by 

do'/dX2 ~--,e = ~l(Mc),~ + i(2c/d)(MM)~e 2. (1) 

2c denotes the Compton wavelength, 2c = h/mc, d is 
the interplanar lattice spacing of the reflection under 
consideration and r o = e2/mc 2 is the classical electron 
radius. The magnetic and the charge scattering ampli- 
tudes (MM) and (Mc) are given in equations (4) and (5) 
of paper 1 in polarization-dependent matrices in a basis 
system, where cr and Jr represent the incident photon 
polarization perpendicular and parallel to the scattering 
plane, respectively (paper 1, Fig. 2). If only low- 
indexed reflections up to the MnF 2 500 are considered 
for 80keV photons, we can neglect terms with 
sin20 _< 1/100 in (M M) and obtain the very simple 
expression 

O" 7r 

(MM)= o" S 2 0 .  (2) 

zd 0 $2 

Thus, the magnetic scattering IS only sensitive to S 2, the 
Fourier transform of the spin component perpendicular 
to the scattering plane, parallel to - k  x k'. Obviously, 
there is no dependence on the orbital angular 
momentum for high energies and small scattering 
angles. To distinguish between scattering due to the 
spin and orbital angular momentums, two measure- 
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ments should be performed with photons and neutrons 
on the same crystal. 

If higher-indexed reflections are considered, the 
foregoing simplification is not applicable. However, 
for MnF 2 we have only a spin moment (L = 0) and 
according to the experimental configuration S 3 = 0. The 
remaining term S 1 in the off-diagonal elements 
describes the spin component in the scattering plane 
perpendicular to the scattering vector, which is insig- 
nificant in our scattering geometry. 

As a result, we measure purely magnetic scattering 
on the antiferromagnetic Bragg positions. Equation (1) 
considers a e-polarized incident beam and a scattered 
beam of polarization e'. For arbitrary polarization, the 
general expression for the magnetic differential cross 
section for high-energy photons at small scattering 
angles is obtained from the density-matrix formalism 
discussed by de Bergevin & Brunel (1981) and Blume & 
Gibbs (1988): 

(dcr/d~2)magneti c -- ~(2c/d)2lS2l.  (3) 

For higher-indexed reflections and linear incident 
polarization, the magnetic scattering cross section can 
be expanded to second order in 0: 

(dtr/d~)magnetic - ~(~.c/t02[$2(1 - 02) - $202]. (4) 

Finally, we want to point out some features valid for 
high-energy X-rays around 100keV: 

Polarization. Compared to medium-energy X-ray 
diffraction, the magnetic cross section (3) has no 
polarization dependence. Equation (2) shows that the 
cross section is completely independent of the polariza- 
tion state of the incident beam. Moreover, for a linear 
or- or zr-polarized beam, there is no possibility of 
proving the magnetic character of a reflection by 
polarization analysis at small scattering angles. For 
larger scattering angles, tr-to-rr scattering is suppressed 
by a factor sin 0 compared to or-to-or scattering. Note, 
however, that in the general case of arbitrary incident 
polarization a change of the polarization state can occur 
during magnetic Bragg diffraction. 

Spin scattering. Equation (3) shows that there will be 
no signal from spin components lying in the scattering 
plane. If all spins of a macroscopic sample can be made 
to lie in the scattering plane by turning the sample 
around the scattering vector Q, the magnetically 
diffracted intensity tends to zero. This is possible for 
a monodomain crystal with collinear spin structure, for 
example. Note that this is a special case of the data 
presented in paper 1, Fig. 10 (Briickel et al., 1996) for 
sin 0 ~ 0. For M n F  2 at an X-ray energy of 80 keV, the 
magnetic character of the 300 reflection has been 
proven by this method in a previous paper (Lippert, 
Bdickel, K6hler & Schneider, 1994). 

Volume enhancement. Owing to the large penetration 
depth of high-energy X-rays, an enhancement of the 

cross section of several orders of magnitude can be 
obtained compared to the medium X-ray energies 
described in paper 1. 

3. Experimental 

The experiment was performed on the triple-crystal 
diffractometer at the white-beam station of the ESRF 
high-energy beamline ID15. The gap of the asymmetric 
wiggler was fully closed, thus gaining a critical energy 
of 43 keV with the storage ring operating at 6 GeV. The 
permanently installed cooled filters absorb the low- 
energy tail of the white beam in order to minimize the 
heat load on the monochromator. The beam size of 
2 mm horizontal and 3 mm vertical is defined by cooled 
slits in front of the instrument. An energy of 80 keV was 
chosen where we knew from earlier experiments that 
there are regions in q/ (rotation around the scattering 
vector) that are free of multiple scattering (Lippert, 
BriJckel, Krhler & Schneider, 1994). The MnF 2 crystal 
is the same as in the experiments at HASYLAB 
(Briickel et al., 1993, 1996; Lippert, Brtickel, Krhier 
& Schneider, 1994). It has the form of a small platelet 
and the a axis is normal to the plate surface. The 
tetragonal c axis lies within the plate and is oriented 
almost along a diagonal of the rectangle (Fig. 1). To test 
the volume enhancement, the surface of the platelet was 
oriented parallel to the beam. Then, the sample 

3mm 

2mm 

a~ 
I 

~--~2mm 

¢ 

Fig. 1. Crystal geometries used in the experiment. On the left, the 
geometry with a variable beam path through the crystal is shown. 
On the right, the symmetrical Laue geometry with a constant beam 
path of 2 mm is shown. Below, a three-dimensional view of the 
crystal is plotted. 
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thickness seen by the beam, perpendicular to the c axis 
and parallel to the surface, is given by 
t = z [ t a n ( 9 0 - ~ o ) + t a n q g ] ,  where 99=35.1 ° and 
0 < z < 8.6 mm is the position of the beam relative to 
the crystal starting from the upper edge and going to 
maximum thickness. For the measurement of the Q 
dependence and the temperature dependence of the 
intensity, the surface was oriented perpendicular to the 
beam. Note that in this Laue configuration geometrical 
factors are negligible owing to the small scattering 
angles. 

Fig. 2 shows a sketch of the three-crystal diffrac- 
tometer. The horizontal scattering geometry for mono- 
chromator, sample, analyzer and detector can be 
defined by moving the rotation stages independently 
on rails. The background is reduced by four collima- 
tors, which are mounted in front and between the 
stages, each with a horizontal opening of 5 mm. As 
monochromator and analyzer, we used imperfect Si 311 
crystals in Laue geometry to get a nearly non-dispersive 
set-up in ( + , - ,  +)  geometry for the magnetic 300 
reflection of MnF 2. The respective lattice spacings are 
dmonochromator : danalyzer : 1.637 A-:  and dMnF. 300 -- 
1.625 A -1 . The use of imperfect crystals with ro'cking- 
curve widths of "-, 6" results in an intensity-enhance- 
ment factor of about 50 as compared to perfect Si 
crystals without significant degradation of resolution 
owing to the sample mosaicity of 12". In silicon, the 
622 reflection is suppressed in intensity by a factor of 
108 as compared to the 311 reflection, whereas the 933 
and 12,4,4 reflections are allowed (Hart & Deutsch, 
1990). There is no 2/2 contribution, whereas we had 
very strong 2/3 and 2/4 harmonics owing to the wiggler 
and beamline characteristics. While these higher 
harmonics can in general be suppressed owing to the 
energy resolution of the Ge detector by setting 
appropriate energy windows, they can lead to dead- 
time effects by saturating the detector. In the following, 
we will distinguish between a two- and a three-crystal 
mode of diffractometer operation depending whether 
the beam is diffracted only by monochromator and 
sample or also by the analyzer. In the three-crystal 
mode, we obtained a resolution of about 10-3A -1 
longitudinal, 2 x 10-4~t -1 transversal and 10-2A -1 
perpendicular to the scattering plane. The cryostat was 
an ILL-type Orange cryostat with an adapted ILL 
controller using two sets of calibrated Pt 100 and carbon 
resistors as temperature sensors for regulation and 
measurement, respectively. The cryostat was used as 
for neutron scattering experiments, i.e. without special 
windows. The 10 mm aluminium from the cryostat tails 
located in the beam resulted in an attenuation of the 
primary beam by 40%. For the measurements in the 
critical regime, we obtained a temperature stability of 
better than -4-0.001 K and the minimum temperature step 
near the phase transition was 0.01 K. In order to prevent 
the detector from saturation in the case of strong 

reflections, the diffracted beam was attenuated by Fe 
and Pb absorbers. Since a monitor for the intensity of 
the incident beam was not available, we normalized the 
measured intensities with the electron ring current, 
which gave excellent reproducibility. This procedure is 
only possible because of the source stability and the fact 
that thermal effects due to the white beam hitting the 
monochromator are negligible: the low-energy tail of 
the spectrum is suppressed by the absorber down stream 
and most of the remaining hard X-rays are diffracted 
and not absorbed by the monochromator crystal. 

4. Multiple scattering 

Three-beam multiple charge scattering due to Umwe- 
ganregung occurs if an additional reciprocal-lattice 
point lies on the Ewald sphere, as shown in Fig. 3. The 
effect has been discussed for diffraction of 411 keV 
y-radiation from rather strong Bragg reflections 
(Schneider, 1975). However, Umweganregung is a 
very serious problem if the reflections investigated are 
weak. This is the case for the pure magnetic reflections 
of MnF 2, where the magnetic unit cell is the same as the 
structural one. Owing to the non-symmorphic space 
group of MnF 2, charge scattering at 2n + 1, 0, 0 
positions is forbidden by non-integral extinction rules 
only. Note that this is a very unfavorable situation for 
MnF 2 since integral extinction rules for non-primitive 
Bravais lattices rule out Umweg reflections. Therefore, 
in MnF 2, it is possible to get multiple charge scattering 
by a combination of two charge reflections transferring 
intensity to positions where otherwise only magnetic 
scattering is expected. The incoming photons are charge 
scattered twice to be finally diffracted in the same 
direction as the magnetically scattered photons. The 
condition for three-beam multiple scattering is that Q' 
and Q" with Q = Q' + Q" are allowed reflections. One 
way to suppress multiple scattering is to rotate the 
reciprocal lattice around the fixed scattering vector Q 

i 1  < p 

h 1 u 
t 
e 
h 

Fig. 2. Layout of the three-axis diffractometer at ID15 at ESRF in 
Grenoble. The rotation stages for monochromator M, sample S, 
analyzer A and detector D are mounted on rails to define the 
horizontal scattering geometry. The first three axes are built on an 
antivibrational table to avoid instabilities. The sample stage allows 
the cryostat to be mounted as used in this experiment. The slit B in 
front of the detector is used to define its aperture. 
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(q~ rotation) until no other reflection touches the Ewald 
sphere. However ,  this is possible only for low energies. 
The probabi l i ty  of  multiple-scattering events to occur 
increases with photon energy because the Ewald sphere 
becomes larger,  increasing the probabil i ty that addi- 
tional reciprocal-lattice points lie on the Ewald sphere. 
For high-energy photons, a temperature-independent  
modulated background due to multiple Bragg scattering 
is observed (Fig. 4) because there is always a large 
number  of  reflections with low intensities present on the 
Ewald sphere. A displacement of  the m a x i m u m  of  this 
background relative to the nominal  peak position occurs 
if  the U m w e g  reflection is close to, but not exactly on, 
the Ewald sphere. Then,  only the tails of  the resolution 
function (Neumann,  Rfitt, Bouchard,  Schneider  & 
Nagasawa,  1994) cause mult iple scattering. These 
resolution streaks extend outside the ideal w~ position• 

A typical  q/ scan is shown in Fig. 5. We have 
calculated three-beam multiple-scattering reflections 
using the program M U S K A T  (Chernenkov,  1989) and 
were able to index the measured U m w e g a n r e g u n g  

reflections. These  reflections are very sharp in qt 
(with a width smaller  than 0.01 °) because low-indexed 
strong reflections pass the Ewald sphere in an almost 

i i i i i i i i i i i  i i i i  i 80 0k~V 

. . . . . . . . . . . . . . . .  3100 

: . ; i i i  i i i i  I I I I I I I I I I I I Q ,  ii 

Fig. 3. Reciprocal lattice of MnF 2 in the ab  plane. The intersections of 
the Ewald spheres are shown for different energies. Q denotes the 
scattering vector of the 300 reflections, Q' that of an additional 
charge reflection 14,4,0 on the Ewald sphere for 80 keV, Q" is the 
effective scattering vector for the U m w e g a n r e g u n g  17,4,0. 

perpendicular  direction during a qz scan (compare .Fig. 
3). Not all calculated U m w e g a n r e g u n g  reflections were 
observed in this qJ range because the scan was too 
crude. 

To investigate the behavior  of  multiple scattering as a 
function of photon energy, we take into consideration 
all reciprocal-lattice points within a shell around the 
Ewald sphere defined by the energy width of the photon 
beam. From the divergence of  the beam incident on the 
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Fig. 4. Magnetic 300 reflections near T~¢. The background around the 
Bragg reflection is temperature independent but modulated owing to 
multiple charge scattering. Because of the high Q space resolution 
and this background, no critical diffuse scattering could be 
observed. 
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Fig. 5. Representative ¢,' scan for the 300 magnetic reflection at 

80 keV. The measured multiple-scattering events have been indexed 
by comparison with calculation. The respective multiple-scattering 
events are indexed by the reflections Q' involved in the scattering 
process. 
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monochromator of 14" and the width of the rocking 
curve of the 311 Si monochromator of 6", the thickness 
of the Ewald sphere dk can be estimated according to 
dk = k cotOM d0, where OM is the Bragg angle of the 
monochromator and d0 the total beam divergence. All 
reflections between the two Ewald spheres with radius 
k - dk /2  and k + dk/2 are considered. The reflections 
are calculated from the atomic form factors of Mn 2+ and 
F-  according to International Tables for  Crystal- 
lography (1992), with the Debye-Waller factor for 
low temperatures taken from Jauch, Schultz & 
Schneider (1988). 

First, we calculate the total scattered intensity from 
all Bragg reflections that can be excited. As indicated in 
Fig. 6, the full Q range [0, 4rr/2] is divided into 
intervals [Qi, Qi -F zaa] with Qi - -  iAQ, where Q is 
defined as Q = 2rc/d. The average intensity Pi arising 
from Umweganregung of all reflections in this interval 
can be approximated in the following way: 

I~m "~ IQ, X la,, ~-- i 2 for Q<< Q', (5) 

Q" ~ [Qi, Qi + AQ], 

Pi = ~ l~2m ~- ni~i . (6) 
Q~[Oi,Qi+dQ] 

QEVdk 

Here, Ia, and Ia,, are the intensities of the two charge 
reflections involved in the multiple-scattering process, 
explicitly calculated for MnF 2. I i is the average Bragg 

v~k 

Qi÷l 

Ak 
I 
I 
I 

' I  
( 

AQ 

300 

Fig. 6. Two-dimensional cut of the broadened Ewald sphere. Vdk 
denotes the volume between the two limiting spheres defined by the 
energy spread of the incident beam. Qi and Qi+l are the radii of two 
spl~eres around the origin. The hatched areas are cuts through the 
volume defined by the interval AQ and the Ewald sphere. In this 
figure, the thickness of the Ewald sphere is very exaggerated. 

scattered intensity in the interval i, 1~ m is the average 
scattered intensity due to Umweganregung, Vdk is the 
volume between the two Ewald spheres and n i is the 
number of reflections in the volume V/defined by the Q 
range [Qi, Qi + AQ] and the 'thickness' of the Ewald 
sphere (see Fig. 6). The approximation of considering 
Umweganregung via only high-indexed reflections Q' 
and Q" is reasonable because only low-indexed 
magnetic reflections are measured. Then, we always 
have multiple scattering from two reflections in the 
same volume V/. In Fig. 7, Pi is shown as a function of 
Q for a photon energy of 80 keV. The intensity scattered 
from the interval i is maximum for Q - 5 A -1 . The total 
scattered intensity Ptot, shown in Fig. 8 as a function of 
energy, is given by 

etot  = ~ ei. (7) 
i 

Here, the sum runs over all shells i into which the 
volume V~ of the Ewald sphere is divided. Above 
30 keV,/'tot increases very slowly. While the number of 
strong multiple-scattering reflections remains constant, 
only very weak high-indexed reflections add to 
Umweganregung events. 

In the following, we want to estimate first the number 
of strong reflections for small Q' to decide whether they 
can be suppressed by turning the crystal around the 
scattering vector. Second, we want to estimate the effect 
of reflections with small intensities for large Q'. 

A large number of reciprocal-lattice points are 
located in the volume between the two Ewald spheres 
defined by k - dk /2  and k + dk/2.  In our experiment, 
the magnetic reflections are by a factor of approxi- 
mately 10 -6 weaker than the strongest charge reflections 
and the peak-to-background ratio is of the order of 102. 
Therefore, we have to take into consideration all 
multiple charge scattering intensities greater than 10 -8 
of the strongest charge reflection. 

10 

-2 
10 

10 -5 

10-8 

l0 II 

E = 80 keV 

i i i I i i i I i t i I , , , 

0 20 40 60 
Q [k -1 ] 

80 

Fig. 7. Average intensity Pi due to multiple charge scattering in a Q 
interval AQ = 0.1 A -l . Pi is plotted versus Q for 80keV on a 
logarithmic scale. 
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In Fig. 9, we plot the average number of multiple- 
scattering events N~rot for any given q/position in the 
intensity interval 10 -(r+l) < RM/R o < 10 - r .  Here, R M 
is the intensity of the multiple-scattering reflection and 
R 0 is the intensity of the strongest charge reflection. If 
N~Kot is much larger than 1, multiple scattering cannot be 
suppressed by a q~ rotation. As we remove one 
reflection from the Ewald sphere, others will enter 
this sphere. All events with NIXot _~ 1 and smaller can be 
suppressed by a qJ rotation. From Fig. 9, we see that 
Umweganregung events with intensities down to the 
10 -6 level can be suppressed by a q/rotation. Below the 
10 -8 level, we can expect a more-or-less constant 
background of multiple charge scattering at the 
magnetic Bragg positions. Note that N~Kot undergoes 
only minor changes if we increase the photon energy 
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Fig. 8. Total scattered intensity Ptot due to Umweganregung versus 
photon energy. For a definition of Ptot, see text. 
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Fig. 9. Average number Ntrot of  multiple-scattering events for any 
given g' position in the intensity interval 10 -(x+l) < Ru/R  o < 10 - r  
versus the reflectivity of the multiple-scattering reflection normal- 
ized to the reflectivity of the strongest charge reflection Ru/Ro. 

above 80keV. Therefore, we expect to be able to 
suppress multiple charge scattering also at much higher 
photon energies. This is also evident from Fig. 8. 
Finally, we can calculate the average number of 
multiple-scattering events down to the 10 -8 intensity 
level in a given Q interval from Q = 0 up to Q = Qmax. 
We find, for 80keV, that above Q = 18 A -1 there is 
always more than one reciprocal-lattice point on the 
Ewald sphere. Therefore, these weak high-indexed 
reflections contribute to the background. For all 
Q < Qmax = 18 ,~-l, the multiple scattering can always 
be suppressed. 

5. Magnet ic  diffraction from M n F  2 

Figs. 10(a) and (b) show sample (co~) and analyzer (Wa) 
scans of the 300 reflection in the three-crystal mode at 
5 K. This corresponds to a transverse and a longitudinal 
scan, respectively. The peak widths of 12 and 5" 
correspond to a Q-space resolution of 2 x 10 -4 and 
1 × 10 -3 A -1, respectively. The peak intensity is about 
12 000 photons s -1 . The same reflection measured in the 
two-crystal set-up (Fig. 10c) shows a width of 13" and a 
peak intensity of --d9000 photons s -1. The peak-to- 
background ratios are 230:1 and 10:1, respectively. 

The enhancement of the intensity of the magnetic 
Bragg reflections with increasing sample volume is 
shown in Fig. 11 in the form of the linear dependency of 
the 300 integrated intensity on the average beam-path 
length through the crystal. This measurement in 
asymmetric Laue geometry was corrected for absorp- 
tion. The variation of the average beam path from 0 to 
18.3mm was made possible by moving the crystal 
through the beam. The scattering geometry was 
discussed in §3. The transmission is calculated as 
f e x p ( - / z t ) d V / V  by integrating over all possible 
beam paths through the crystal, whose maximum linear 
dimension is more than twice the absorption length 
lab s = 1//z. # is the mass absorption coefficient which 
takes into consideration the photo effect and Compton 
scattering, the cross section for Rayleigh scattering 
being of minor importance for elements with low Z. For 
MnF 2, it is/Z80ke v -- 1.484 cm -1 . /z has been calculated 
using the values for Mn and F from the program 
ABSORPTION (Brennan & Cowan, 1992). 

The Q dependence of the reflectivity of the structural 
and magnetic reflections is shown in Fig. 12. These 
measurements are done in symmetric Laue geometry 
according to Fig. 1. For a measurement of the charge 
reflections, the diffracted beam has to be attenuated to 
avoid saturation of the detector. We employed an 
absorber of 2mm Pb and 18mm Fe to measure the 
charge reflections, which leads to a transmission of 
1.1 x 10 -6 for 80 keV, 3.9 × 10 -2 for 240keV (third 
harmonic) and 0.103 for 320keV (fourth harmonic) 
after Brennan & Cowan (1992). Since for a completely 
closed wiggler gap the energy spectrum extends to very 
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high energies, the saturation of the detector due to 
higher harmonics can be a serious problem. In our case, 
we could not measure the 200 reflection reliably, which 
would become possible only by opening the wiggler 
gap. Therefore, only three reflections h00 are left, 
namely 400, 600 and 800. Their reflectivity can be 
calculated using an approximation that considers only 
small secondary extinction and no primary extinction in 
the Laue scattering geometry (Zachariasen, 1967): 

R a = Q(t /cos 0) exp[-(/z + gQ)t /cos  0], (8) 

where 
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Q = ~(1/V2c)()~3/sin20)lFol 2. (9) 

p. is the linear mass absorption coefficient of MnF2 ,  ). 
the photon wavelength, t the thickness of the crystal, FQ 
the structure factor and Vuc the volume of the unit cell. 
For small Bragg angles at 80keV, the polarization 
factor is 1. The secondary-extinction factor has been 
calculated from the measured width of the sample 
rocking curve of the magnetic 300 reflection r / -  12" by 
g = 1/2(rrr/) ]/2 (Zachariasen, 1967) and gives a param- 
eter-free theoretical curve. The primary extinction can 
be neglected because the extinction length for the 400 
reflection of M n F  2 is tex t = 60 gm. This is much larger 
than the expected size of perfect domains in our sample, 
which shows a mosaic spread of 12", 50 times larger 
than the width of the perfect crystal. 

Magnetic reflections have been measured in the three- 
crystal mode from the 100 to the 700 reflection. For all 
magnetic reflections, we performed two-dimensional 
scans in reciprocal space in the three-crystal mode, i.e. 
sample scans on different analyzer positions, as shown 
for the 300 reflection in Fig. 13. In this way, we are 
able to determine the integrated intensities in the three- 
crystal mode. Additional scans in the two-crystal mode 
were performed, but are sometimes affected by small 
contributions of multiple charge scattering or dead-time 
effects from higher harmonics. According to (3), the 
reflectivity of the magnetic reflections can be described 
by 

RaM = r~o(),c/d)2(~,3 / sin 20)(1/VZc)f2aglS212 

x ( t / cosO)exp( - l z t /cos  0), (10) 
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Fig. 10. Representative scans of the magnetic 300 reflection at 
T = 5 K. (a) and (c) show transversal scans in the three- and two- 
crystal modes, respectively. (b) shows a longitudinal scan in the 
three-crystal mode. The current in the ESRF storage ring was 104 
and l l5mA for the scans in three- and two-crystal modes, 
respectively. 
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Fig. I I. The integrated intensity of the magnetic 300 reflection as a 
function of the beam path length through the crystal. The points 
show the measured intensity corrected for absorption. The dashed 
line represents the calculated intensity without absorption. The solid 
line shows the calculated intensity with absorption. 
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where fmag is the magnetic form factor and $2 the spin 
component perpendicular to the scattering plane. In 
contrast to (8), extinction is negligible for magnetic 
reflections l The reflectivity RaM is proportional to 
Q2fmZag. This multiplication of the magnetic form factor 
by the magnitude of the scattering vector causes a peak 
in intensity between the reflections 100 and 300 and a 
less-rapid decrease of intensity with increasing Q, 
making high-indexed reflections accessible. 

The measured intensity ratio between the magnetic 
300 and the 400 charge reflection is 5.2 x 10 -6. The 
calculated ratio is 2 x 10 -6, taking in consideration the 
extinction of the charge reflections. 

Finally, we have investigated the temperature depen- 
dence of magnetic scattering. The inset in Fig. 14 shows 
the temperature dependence of the intensity of the 300 
reflection measured from 5 K up to 80K. In order to 
minimize multiple charge scattering, we performed t/z 
scans above the N6el temperature T N and chose a region 
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Fig. 12. Q dependence of the reflectivity of charge (upper part) and 
magnetic (lower part) reflections. The dots represent measured 
values, the solid lines show the calculated behavior, rescaled to fit 
with the measurement. 
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Fig. 13. Contour plot of the magnetic 300 reflection at T = 5 K. The 
levels of the lines are 1000, 2000, 4000, 6000 and 8000 counts s -~ . 

in ~ where the background of multiple scattering was 
low at the co s position of the 300 reflection. Fig. 4 shows 
the modulated background at the 300 position. This 
background is temperature independent, whereas the 
magnetic reflection disappears with increasing 
temperature. 

From (3), it follows that the sublattice magnetization 
M ( T )  "" S 2 ( T  ) is proportional to the square root of the 
magnetic Bragg intensity. In the critical temperature 
region just below TN, the sublattice magnetization is 
expected to follow the power law 

m = Dr  ~ (11) 

with the reduced coordinates 

r = ( T  N - T ) / T  N, m =  M ( T ) / M ( O ) .  (12) 

Here, /5 denotes the critical exponent, TN the N6el 
temperature and M(0) the saturation magnetization. The 
scale factor D, the critical exponent and the critical 
temperature are determined from experiment. 

The magnetic reflections measured with X-rays are 
free of extinction, in contrast to neutron measurements. 
In addition, the separation of diffuse scattering from 
true Bragg scattering is easier because of the high 
Q-space resolution. This allows a very accurate 
determination of/3. To determine/5, we subtracted the 
background, which is temperature independent, from 
the scans (compare with Fig. 4). In describing the 
integrated intensities by the squared power law (11), we 
obtained the best fit for data points in the temperature 
range from T - 66.0 K to T = T N. The goodness of fit 
was 1.1. Fig. 14 shows the sublattice magnetization as a 

0.1 

. . . . . . .  i . . . . . . . .  i . . . . . . .  

500 I ' "  "~* . . . . . . .  " '1 

3 0 0  " °  ° 

I0(~0 , . , ~ , , , I . , . ~ , _ , : ~ _  

0 9 0  T [ K ~ 3 ~  

/ [] = 0.333(3) 
. J - /  T N = 67.713(2) K 

. . . . . . . .  i . . . . . . . .  i . . . . . . .  

0.0001 0.001 0.01 0. ! 

Fig. 14. The main graph shows the reduced magnetization 
m = M ( T ) / M ( O )  as a function of the reduced temperture 
r = 1 - T /Tu  on a double logarithmic scale for the magnetic 300 
reflection. The points are taken from the measurement, the solid 
line represents a fit using equation (11). The inset shows the 
temperature dependence of the intensity of the magnetic 300 
reflection from 5 to 80K with TN = 67.713 K. 
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function of temperature in reduced coordinates and on 
a double logarithmic scale. For the parameters in (11), 
we find the following values: /3--0.333(3), 
T N -- 67.713 (2)K and D = 1.136. The saturation mag- 
netization, necessary for the calculation of D, was taken 
from a second independent measurement. For this 
reason, it is difficult to give an error estimation for D. 

6. Discussion 

As stated in the Introduction, our principal aim was to 
contribute to the development of non-resonant magnetic 
X-ray diffraction as a powerful microscopic probe of 
bulk magnetic properties, complementary to neutron 
diffraction. We believe that this aim has been reached 
by using very hard X-rays of 80keV. The volume 
enhancement of diffracted intensities leads to high peak 
intensities of up to 19000 photons s -1. This and the 
peak-to-background ratio of up to 230:1 compare very 
favorably to neutron diffraction and non-resonant X-ray 
diffraction at lower energies (see paper 1). 

One major advantage over the traditional probe of 
neutron diffraction is the good transversal Q-space 
resolution of 10 -4, which is about two orders of 
magnitude better than in standard neutron diffraction. 
However, the high intrinsic resolution limits the 
applicability of the method to crystals with very narrow 
mosaic distribution and small Ad/d. For samples of 
poor quality, the peak broadens and the peak intensity 
decreases until the magnetic Bragg scattering merges 
into the background of Compton, charge disorder and 
thermal diffuse scattering. However, this limitation can 
be overcome if appropriate mosaic crystals can be found 
as monochromator and analyzer. 

So far, we have applied the new method only to 
antiferromagnets where the magnetic Bragg scattering 
occurs at positions in reciprocal space where charge 
scattering vanishes. For ferromagnets, purely magnetic 
scattering cannot be observed on the high background of 
charge scattering. However, we pointed out earlier 
(Briickel et al., 1993) that the charge-magnetic 
interference scattering should be particularly easy to 
measure at these high photon energies owing to the 
small scattering angles. 

For antiferromagnets where the magnetic diffraction 
occurs at non-integral positions in reciprocal space, or 
at positions that are charge forbidden by integral 
extinction rules, charge scattering is no problem. This 
is the case for most antiferromagnets. MnF 2 is an 
exception, since charge scattering can occur owing to 
Umweganregung at positions where purely magnetic 
diffraction is expected. A large portion of the present 
study was devoted to the investigation of such multiple 
charge scattering events. We were able to demonstrate, 
via both experiment and calculation, that, despite the 
high probability for Umweganregung to occur at these 
high photon energies, multiple charge scattering can 

largely be suppressed by turning the crystal around the 
scattering vector Q. Thus, the method is applicable to 
systems like MnF 2, too. While Fig. 4 shows that 
multiple charge scattering can lead to a modulated 
background, this modulation is negligible at saturation, 
where a peak count rate of 13 000 photons s -1 has to be 
compared with the amplitude of the background 
modulation of about 100 photons s -1. In the critical 
region, where the Bragg intensity is small, this back- 
ground stays constant and can be corrected for by 
simply subtracting a high-temperature spectrum taken 
above T N. By calculation, we demonstrate that the 
probability for multiple-scattering events first increases 
with photon energies but that this increase is negligible 
above 30 keV. Therefore, if 80 keV photons could be 
applied successfully in the present study, much higher 
photon energies could be used without additional 
complications. Only a higher background due to 
Umweganregung involving very high indexed charge 
reflections is expected. Our study of multiple scattering 
shows that this problem can be handled even at much 
higher energies than 80 keV. 

The fundamental importance of the method becomes 
clear from an inspection of the magnetic scattering cross 
section (3). For energies around 100keV, it depends 
only on the spin component S 2 perpendicular to the 
scattering plane. This allows the determination of spin 
density distributions without polarization analysis. 
While neutrons always measure the sum 2 S + L ,  
medium-energy X-rays allow in principle the separate 
determination of S and L by means of polarization 
analysis. This rather complicated method involves a loss 
in count rate by typical factors of 50. Moreover, 
systematic errors, e.g. due to incomplete integrations 
over beam divergences, can easily occur. For these 
reasons, no convincing data for such an S, L separation 
exist to date. Here, our method of high-energy magnetic 
X-ray diffraction might provide a complementary 
powerful tool for the determination of S(Q) without 
polarization analysis. 

In this context, it is important to emphasize that the 
polarization of the incoming beam can be arbitrary, 
since it does not affect the scattering cross section (3). 
While this is certainly an advantage, the drawback is 
that the magnetic nature of a Bragg reflection cannot be 
identified by polarization analysis. For medium 
energies, we have demonstrated in paper 1 (Briickel et 
al., 1996) how a-to-n" scattering can be used to identify 
magnetic Bragg scattering. In a first approximation, 
such a change in polarization does not occur for 
high-energy magnetic photon scattering, as can be 
seen from (2). Moreover, from an experimental point of 
view, polarization analysis at these high energies is not 
a trivial problem and new methods need to be 
developed. Keeping these arguments in mind, our 
Q-dependent reflectivity measurements shown in Fig. 
12 can be considered as a first step towards such a 
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spin-density measurement. We could demonstrate that 
the magnetic form factor is weighted by the magnitude 
of the scattering vector. This, together with the intrinsic 
large Q range for very hard X-rays, allows the 
form-factor measurement to be extended to rather 
large Q values. Such form-factor measurements should 
be feasible with very high precision since systematic 
errors are expected to be very small: absorption is 
minor at these wavelengths and extinction can be 
completely neglected for the magnetic reflections 
owing to the small cross section and the short 
wavelength. However, Fig. 12 also demonstrates a 
general drawback of magnetic X-ray scattering as 
compared to neutron diffraction, namely the uncertainty 
of the normalization of magnetic Bragg intensities 
relative to charge scattering. Since the cross section 
differs by six orders of magnitude, uncertainties in the 
stoichiometry of the absorber material, its thickness and 
absorption coefficient become very important. Other 
ways of normalizing, e.g. by measuring the Compton 
scattered photons, will have to be considered. 

Next, we want to discuss consequences of the volume 
enhancement demonstrated in Fig. 11. For transition- 
metal compounds with penetration depths of close to 
10mm, the volume enhancement amounts to roughly 
three orders of magnitude. For the heavier magnetic 
elements, similar factors can be achieved for smaller 
samples. For 150keV, a typical penetration depth for 
lanthanides is 1 mm, for actinides 0.2mm. Only for 
actinides are the enhancement factors observed in 
resonant exchange scattering larger compared to the 
volume enhancement expected for high-energy X-ray 
diffraction. However, the big advantage of the latter is 
the access to true bulk properties. Therefore, sophisti- 
cated surface-preparation techniques necessary for the 
observation of resonant exchange scattering can be 
avoided. 

Finally, we want to discuss the temperature 
dependence of the sublattice magnetization in the 
critical region. Again, the traditional method for the 
investigation of critical phenomena is neutron diffrac- 
tion. High-energy X-ray diffraction has distinct advan- 
tages as compared to this standard probe. For all 
diffraction techniques, crystals of high quality, i.e. 
narrow mosaic distribution, are required to clearly 
separate critical diffuse scattering from Bragg diffrac- 
tion. However, neutron diffraction from close to perfect 
crystals suffers severely from extinction. Improper 
extinction corrections will result in systematic errors 
for the critical exponent/3. This might be the reason for 
the absence of neutron diffraction measurements of/3 
for MnF 2. This problem is absent in high-energy X-ray 
diffraction: the magnetic cross section and the wave- 
length are so small that the first Born approximation 
holds perfectly. Of course, this argument is also valid 
for medium X-ray energies around 10keV. However, 
these probe only a near-surface region where the critical 

behavior can easily be influenced by surface defects 
(Hill, Feng, Birgeneau & Thurston, 1993). Moreover, 
the intensities obtained for non-resonant X-ray diffrac- 
tion are much smaller in this energy range (Goldmann et 
al . ,  1987). Finally, the need for X-ray-transparent 
windows makes it difficult to obtain the temperature 
stability required in the critical region. The combination 
of these factors explain the rather large standard 
deviation for the critical exponent obtained by Gold- 
mann et al. (1987). Their value of/3 - 0.31 (2) is still in 
rough agreement with our value, /3 = 0.333 (3), but 
does not allow us to distinguish between different 
models. 

Another highly precise study stems not from diffrac- 
tion techniques but from a NMR investigation by Heller 
(1966). He obtained exactly the same critical exponent 
of/3 = 0.333 (3). The difference in N6el temperature of 
67.713(2)K (this work) and 67.336K (Heller, 1966) 
lies within the usual uncertainties of the absolute 
temperature calibration. Heller argues that taking into 
account the effect of thermal expansion of the lattice 
changes the value of/3 to 0.335 (5). While the NMR 
technique proved very powerful in the case of MnF 2, it 
is not of the same general applicability as a diffraction 
technique. One drawback is that NMR measures the 
transferred hyperfine field at the 19F nucleus and not the 
sublattice magnetization directly. Therefore, changes in 
the M n - - F  distance can severely affect the critical 
behavior. Such an effect has indeed been observed in 
MnF 2 by Jauch, Schneider & Dachs (1983). Moreover, 
NMR cannot easily distinguish between long- and short- 
range order, an essential point for disordered materials, 
e.g. re-entrant spin glasses. 

In our case of MnF 2, two independent experimental 
techniques obtain the same value of/3 = 0.333 (3). This 
value can be compared to theoretical values for /3 
(Collins, 1989). The generally accepted values are 
/3 = 0.326 for the Ising model and /3--0.367 for the 
Heisenberg model. Clearly, our experimental findings 
are much closer to the value for the Ising model. This is 
to be expected owing to the pronounced uniaxial 
anisotropy in MnF 2 (spin directed along +c). However, 
for both independent measurements, the difference 
between the experimental and the theoretical values 
amounts to more than twice the e.s.d. This indicates that 
there is a systematic disagreement between experiment 
and theory. It might be that additional interactions have 
to be taken into account as has recently been shown in 
the case of EuTe (KSbler et al . ,  1993). 

7. Summary and conclusions 

In the present paper, we have demonstrated the 
capabilities of high-energy non-resonant magnetic 
X-ray diffraction on the model system MnF 2 at 
80 keV. We have shown, both by experiment and by 
explicit calculation, that multiple charge scattering does 
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not hamper the observation of the magnetic signal, even 
at much higher energies. We demonstrated the volume 
enhancement of the magnetically scattered intensity by 
roughly three orders of magnitude. This leads to peak 
intensities for the magnetic 300 reflection of MnF z as 
high as 13 000 photons s -~ in three-crystal mode and 
19 000 photons s -~ in two-crystal mode with peak-to- 
background ratios of 230:1 and 10:1, respectively. We 
argue that high-energy magnetic X-ray diffraction is 
sensitive to the spin moment only. Thus, our measure- 
ments of the Q dependence of the reflectivity of 
magnetic Bragg reflections can be regarded as a first 
step towards the determination of the pure spin-density 
distribution. Finally, we demonstrated the precision of 
magnetic structure-factor measurements on the investi- 
gation of the temperature dependence of the sublattice 
magnetization in the critical region. Here, the absence 
of extinction proved to be an essential point. Our results 
for the critical exponent/3 = 0.333 (3) agree very well 
with earlier NMR measurements but show a distinct 
difference to the theoretical value for Ising systems of 
/3 = 0.326. 

The present measurements have demonstrated the 
capabilities of the method. Complete spin-density 
measurements should be possible now. Here, the advent 
of new sources for high-energy synchrotron radiation 
combined with high-quality sample crystals will make 
possible the measurement of systems with much lower 
magnetic moment. For example, at the new undulator 
beam line at the PETRA storage ring at DESY in 
Hamburg, we expect a flux gain by a factor of ten as 
compared to the present study. 

One of us (TB) expresses his gratitude to Professor 
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