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Can a gradient crystal compete with a mosaic crystal
as a monochromator in neutron- or X-ray diffraction?

K.-D . Liss *, A. Magerl
Institut Laue-Langevin, F-38042 Grenoble Cédex, France

First a description of the Bragg reflection in polar coordinates is developed . Subsequently this formalism is applied to describe
diffraction for mosaic crystals, gradient crystals and to include the Doppler effect on moving crystals. Within this framework the
performance of a powder diffractometer as a two crystal configuration is evaluated. A traditional mosaic monochromator seems to
be well suited when large values of reciprocal lattice vectors G are of main interest . However, a gradient crystal monochromator
becomes competitive for G2IG I < 0.5 with GZ and G1 representing the reciprocal lattice vectors of the sample and the
monochromator, respectively. This holds in particular for a reflectometer, where the scientific interest focuses at small GZ values .
It is argued that particularly performant designs can be expected on a reflectometer for a monochromator which combines a
reflection on a gradient crystal with a suitably chosen Doppler effect .

1 . Introduction

In X-ray scattering beam definition is almost exclu-
sively by reflection on single crystals. Although alterna-
tive techniques are employed occasionally in neutron
scattering, still Bragg reflection represents the most
widely used means to define the resolution and the
performance of an instrument . Typical setups are e.g.
powder diffractometers or reflectometers, where crys-
tals appear at the monochromator- and at the sample
position .

The monochromator uses the elastic mechanism of
Bragg scattering by its lattice planes to define the
condition of the wave impinging at the sample . On a
powder diffractometer, the sample consists of a poly-
crystalline material . Differently oriented lattice planes
satisfying their Bragg conditions reflect the incident
wave into corresponding directions towards the detec-
tor . The separation of slightly different lattice parame-
ters is limited by the angular resolution of the instru-
ment . It depends on properties of the monochromator
and in particular whether it is made from a gradient
crystal or from a mosaic crystal . Further the orienta-
tion of the monochromator to the primary beam and
the ratio of the lattice parameters of sample and
monochromator play an important role for the resolu-
tion [1,21 . In the case of neutron scattering, the instru-
mental resolution can be further modified advanta-
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geously by the Doppler effect occurring by reflection
on a moving crystal . This article will concentrate on a
critical evaluation of these parameters .
A reflectometer is basically very similar to a powder

diffractometer . However, the angle of incidence to the
sample surface is in general restricted to less than say
5° . Hence, the interesting scattering vector Q perpen-
dicular to the surface is typically less than 0.5 A- ' .

Generally, perfect single crystals used as a
monochromator deliver the best resolution . However
the phase space element accepted by such a crystal is
very small which results in lack of intensity. With well
engineered phase space elements adapted to the par-
ticular scattering geometry and the interesting scatter-
ing components it is possible to increase the intensity
by one to three orders of magnitude without suffering
in resolution . Flat mosaic and gradient crystals as dis-
cussed here are two basic types of monochromator
crystals which can be adapted for this purpose. Mosaic
crystals consist of small crystallites where all corre-
sponding reciprocal lattice vectors are oriented near a
main direction within an angular distribution of ap-
proximately Gaussian shape. The characteristic mean
value for this distribution function is called the mosaic
spread vl and it is defined by the full width at half
maximum of this angular distribution . Note that the
lengths of the G vectors for all mosaic blocks are
identical.

While the mosaic spread for some materials like
pyrolytic graphite cannot be reduced below certain
values, research is conducted to induce appropriate



mosaic spreads in other materials, e.g . Beryllium or
Germanium . Typical values of the mosaic spread are in
the range of 77 E [0, 2 X 10 -2 ] .
A gradient crystal is characterized by a variation of

the length of its reciprocal lattice vectors G as a
function of its spatial coordinates, while the directions
of G are constant . The idea to use such crystals goes
back to the early years of neutron scattering [3] . How-
ever, gradient crystals do not exist in nature and sev-
eral research activities using temperature gradients [4],
composition gradients [5] and acoustic wave gradients
[61 are done to put them into the real world . The
relative variation AG/G of the reciprocal lattice vec-
tor G is a characteristic property of the gradient crys-
tal . It typically lies in the range AG/G < 10-3 and can
rise for composition gradients up to several percent .

2 . Bragg's law in polar coordinates

The basic mechanism for the reflection of a wave in
a crystal is given by Bragg's law

kf =ki + G, k f =ki =k
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where ki and kf are the incident and the scattered
wave vectors, respectively, k represents their absolute
value i .e . the wave number, and G is a reciprocal
lattice vector . A more common representation is given
with the introduction of the Bragg angle O by

sin O = G/2k .

	

(2)

In this section we recall the algorithm for the geo-
metric construction of accepted and reflected wave
vectors ki and kf, under the condition that the length
and the direction of a scattering vector G are given .
Since Eq . (2) relates the wave number k with an angle,
it seems that polar coordinates in reciprocal space are
the natural and most convenient system for a graphical
representation .

Let the incident white beam originate at the bottom
of Fig. 1 . It will then point to the origin O (zero line) .
Angles are measured from this line in the mathemati-
cal positive sense . The reciprocal lattice vector G is
given in length and direction for an oriented crystal .
For fixed G and given direction of the incident beam,
ki and kf can be constructed in the following way :
draw G/2 from the origin . The perpendicular line AB
with its mid point at the tip of G/2 intersects the white
beam at point A . The accepted wave vector ki is given
by

k i =AO.

Since Bragg scattering is elastic, draw a circle with
radius ki around O. The intersection point B of the

Fig . 1 . Construction of the Bragg reflected and the accepted
wave vectors kf and ki, respectively, when the reciprocal
lattice vector G is given . The white beam is incident from the
bottom towards the origin O of the polar coordinate system .

and O are the orientation angle and the Bragg angle,
respectively .

circle and the construction line gives the end point of
the scattered wave vector

In our coordinate system, kf is defined by the
parameter pair (0, k), i .e . the absolute value of k and
its orientation angle 0. Thus kf can be understood as
a parametric function of k, 0 and G such that

2.1 . Diffraction on a mosaic crystal

9 1

The positive and negative sign represent positive and
negative orientations of G, respectively .

In case of a mosaic crystal the scattering vector G is
rotated around the origin while its absolute value G
remains constant . Thus the end points of scattered
wave vectors lie on a curve with the parametric repre-
sentation

0(k) = t2 arccos(G/2k),

	

k E [G/2, oo ] .

	

(
The two branches designed with + and - in Fig . 2
represent positive or negative orientations of G . The
accepted fraction of this curve depends on both the
orientation of the average G vector and the mosaic
spread 77 of the reflecting crystal . Minimal and maxi-
mal wave numbers k- and k+ belonging to kf and kf
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,P= 0(k, G) . (5)

From Eq . (2) and

0=-rr-20 (6)

follows

0(k, G) = ±2 arccos(G/2k) . (7 )
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from Fig. 2 are selected by maximal and minimal Bragg
angles,

0-= (0 + 17/2),
0+= (0-77/2),

2.2. Diffraction on a gradient crystal
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G

(9a)

(9b)

respectively . For a small mosaic spread rl and avoiding
a backscattering geometry with 0 = 90°, the logarith-
mic derivative of Eq. (2) gives to a first order approxi-
mation :

Ak/k = cot 0 DO,

	

(10)

with Ak =k +-k - and AO = -7 . The reflected wave
vectors fall into an angular interval [(P(k -), OW)]
which means that the incident parallel beam is re-
flected into a divergent one. The divergence is given by

The geometric interpretation of this result is the fact
that a reflected beam is deviated twice the rotation
angle of the scattering vector .

A gradient crystal has a fixed orientation GIG of
its reciprocal lattice vector distribution G but a varia-

Fig. 2 . Bragg reflection on a crystal with mosaicity vl : Wave
vectors of different lengths are reflected to ke and kf . Their
end points are on the curved line from (-) to (+). A scale in
units of the reciprocal lattice vector G is positioned at the top

of the figure .

Fig. 3 . Bragg reflection on a gradient crystal : The reflection
takes place on a radial distribution of reciprocal lattice vec-
tors resulting in a radial distribution of scattered wave vectors .
Minimal and maximal wave vectors kf and kf are selected

depending on the gradient .

tion in length G E [G -, G+ ] . Thus all accepted wave
vectors are reflected at the same angle
O(k) =const .,

	

(13)

i .e . a gradient crystal reflects within its acceptance like
an optical mirror (Fig . 3) . In particular, there is no
beam divergence induced by the reflection :

(14)

The accepted interval [k -, k+] is given again by the
logarithmic derivative of Bragg's law. With G variable
and O constant this gives

Ak/k = i1G/G.

	

(15)

with Ak = k+- k - and AG = G+- G-.

3. Diffraction on moving crystals

In addition to the previous chapters, the Doppler
effect occurring by a reflection on a moving monochro-
mator can be used to shape the reflected phase space
element for the scattering conditions at the sample
[7,81 . This mechanism provides for a large variety of
phenomena. We concentrate here only on the basic
construction rules and on some specific examples . Since
the crystal velocity u, has to be compared with the
phase velocity of the considered wave, Doppler effects
are negligible in the case of X-ray scattering, and the

AO = (P(k+) - O(k_) . (11)

Together with Eqs. (2), (7) and (9) we obtain

AO =2rj . (12)
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Fig. 4. Reflection on a moving crystal. The basic construction
representing a Bragg reflection is done in a primed coordinate
system with origin O' . It is shifted by V towards the system at
rest with origin O. Wave vectors are scattered by G from k ;
to kf in the moving system . Since they have to be read from O
in the system at rest, k ; and k f have different lengths, and the

scattering becomes inelastic .

following considerations only apply to neutron scatter-
ing.

The crystal velocity u, in the laboratory system
transforms like

(16)

into the reciprocal space of wave vectors. As usual m�
denotes the neutron mass and h Planck's constant .
Since V is given, the construction of accepted and
scattered wave vectors has to be performed in a primed
coordinate system which is shifted by V from the
system at rest . In Fig. 4, the origin O of the system at
rest, in which all beam properties are measured, is
shifted to the moving origin O' where the scattering
takes place. The construction in the crystal system as
given by Eq . (7) has to be modified by subtracting an
angular shift 0; since the set of incident wave vectors
k ; with polar coordinates (0;, k;) in O' is no longer
parallel . Depending on k;, 0; is related by

k ; sin e; = V sin ç5,

	

(17)

to V, where (0� , V) are the polar coordinates of V.
One can see immediately from Fig. 4 that in general

k ; :# k f ,

	

(18)

i.e . the scattering process is inelastic.
O' can be largely modified with respect to O when

an appropriate crystal velocity V is applied. This gives
the possibility to translate and rotate phase space ele-
ments selected by a mosaic or a gradient crystal or
even by a perfect crystal reflecting a largely divergent
beam to any desired position and orientation in recip-
rocal space. However, limits may be imposed by techni-

cal restrictions for the crystal motion. In section 6.2
this will be discussed for the case of a moving gradient
crystal .

4. The influence of an incident beam divergence

In the previous chapters an incident beam with no
divergence was assumed. This would correspond to
zero intensity because the volume for such a phase
space element vanishes . Therefore realistic beam di-
vergencies have to be added to the construction .

4.1 . Inplane divergence

A divergent beam can be described by its boundary
rays, inclined to each other by the divergence angle a.
In Fig. 5 the case for the reflection on a mosaic crystal
at rest is demonstrated . The construction discussed
above must be done independently for all points . Obvi-
ously the corresponding construction diagrams as shown
in Fig. 2 are only inclined to each other by a, and all
wave vectors in the accepted phase space element
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Fig . 5 . Reflection on a mosaic crystal with mosaicspread 77
and an incident beam divergence a . The accepted phase
space element ABCD is scattered to A'B'C'D' . The con-
struction can be done by considering the boundary beams AD
and BC resulting in individual lines of end points A'D' and
B'C' which are inclined to each other by a . The final diver-

gence is 277 + a .

II . STATE OF THEART
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4.2 . Out-of-plane divergence

5. Two-crystal setups

K.-D. Liss, A. MagerlI Nucl. Instr. and Meth . in Phys. Res. 338 (1994)

ABCD are scattered to the reflected phase space ele-
ment A'B'C'D' . The strength of the representation in
polar coordinates is demonstrated again by the fact
that the incident beam divergence a is simply an
additive quantity to all angular dependencies . In par-
ticular the divergence of the reflected beam can be
written as

0p(a) = A~P(a = 0) +a .

	

(19)

Thus it suffices for the following to study the case
a = 0 and considering Eq . (19) for the total beam
divergencies, if necessary.

For the reflection on moving crystals, however, the
influence of an incident beam divergence has to be
treated in detailed cases which is not discussed in this
paper. Generally, it results in a finite thickness of the
phase space elements .

For completeness, the basic diffraction properties
for components perpendicular to the mean scattering
plane are given in this chapter. In principle, the con-
struction methods and results for crystals at rest are
still valid : There is no additional beam divergence
created by reflection on a gradient crystal since it
reflects like an optical mirror . Thus, the total final
divergence is given by Eqs. (14) and (19), where a has
to be replaced by its vertical component (3 .

In the case of a mosaic crystal Eq. (12) has to be
slightly modified by a projection . This gives

0O = 2~ sin O,

	

(20)

where ~ denotes the vertical component of the mosaic
spread . For O - 0, 0O - 0, which is compatible with
the fact that Bragg scattering on G/k -~ 0 occurs like a
point reflection . On the other side, for backscattering
with O = 90°, Eq . (20) becomes equal to Eq . (12), i.e .
0O = 2~. In this special geometry in-plane and out-of-
plane scattering are no longer distinguished because
the scattering plane degenerates to a line .

So far the diffraction properties and the resulting
beam divergencies for the reflection on one crystal, the
monochromator, were discussed . This well defined
beam can become incident onto another crystal, the
sample .

In the following all quantities belonging to the first
and second crystal are indexed by the superscripts 1
and 2, respectively . Quantities with no index are global .
At the moment, we only consider scattering vectors of
the same length G1 = G2 on both monochromator and
sample . Let's assume for simplicity that the whole
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phase space element reflected by the monochromator
is accepted by the sample .

The scattering vector G2 with an incident wave
vector

kiz __ kf, (21)

must be aligned for a Bragg condition . For two dimen-
sions, i .e . both scattering planes are parallel, there are
two possible constellations for G1 to G2. In the disper-
sive (+ +) case, k,1 is rotated by a certain angle into
kt =k? and then by the same angle in the same sense
into k2. In the non-dispersive (+ - ) case, G2 is an-
tiparallel to G1 , and k? is rotated back by the negative
angle into kf, which becomes parallel to k ; again .

Generally, the curve describing the end points of
the scattered wave vectors can be written

(P(k) = 01(k) ± 0 2 (k),

	

(22)

the positive and negative sign representing the (+ + )
and ( + - ) case, respectively. Then, the total beam
divergence is given by
0,P= 0(k+) - 0(k-),

	

(23)
where k + and k - are the maximum and minimum
wave numbers transmitted through the whole setup .

5.1 . The mosaic-mosaic setup

Here we consider the two-crystal setup with mosaic
crystals on both monochromator and sample positions.
For the moment G 1 = G2. The polar diagram for this

Fig. b. Reflection on a mosaic-mosaic double crystal setup
with GZ =G1 and mosaic spread 77 . Incident wave vectors k
are scattered by G1 to k? = kÎ . The second crystal scatters,
depending on its orientation, either by - G1 back to kf = k
on the non-dispersive (+-) branch or by G? towards kf on

the dispersive branch from (- -) to (+ +) .



setup is given in Fig. 6. The incident wave vectors k
are reflected by G1 within its acceptance interval into
kf =k;, falling with their end-points on the curve dis-
cussed earlier . In the (+ + ) case the k2 vectors are
ending on a curve with the parametric representation

,P(k) = 20'(k),

because both scattering angles are identical in value
and sense. 01(k) is given by Eq . (8) and the final beam
divergence with Eq . (12) becomes
AO = 477 .

	

(25)
In the (+ - ) case, however, all wave vectors k2 are
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(24)

This is the best angular resolution possible . According
to Eq . (19), it is equal to the incident beam divergence
a.

Let us now consider G2 * G' . Similar curves for the
wave vector end points can be calculated by applying
Eq . (8) individually to the two reflections and putting
the results into relations (22) and (23) . Some examples
are shown in Fig. 7. Again dispersive (+ + ) and the
non-dispersive (+ - ) setups are different. The final
direction of kf, given by Eq. (22) depends on both the
wave number and the ratio G2/G'. Thus, the final
beam divergence Eq. (23) becomes finite, even in the
non-dispersive case .

Fig . 7. Dispersive (+ +) and non-dispersive (+ -) branches
for the lines of starting points of wave vectors passing through
a double mosaic crystal setup and for different ratios G 2/G 1 .
The line of end-points (+) after the reflection on the first

crystal is drawn from the zero line to the top of the graph.

5.2. The gradient-mosaic setup

5.3. Discussion of double crystal setups
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Fig . 8 . Reflection on a gradient-mosaic double crystal setup .
The first reflection occurs in analogy to an optical mirror
where wave vectors are scattered by G1 from k; to kf . The
reflection at the mosaic crystal starts at k? = k; and it results

from scattering on G2 to k2 .

The case with a gradient crystal in the monochro-
mator position and a mosaic sample is shown in Fig. 8.
Then 01(k)= const. and the resulting curve of end
points is given by the reflection on one mosaic crystal,
but rotated by 01, i.e .

e(k) = ~p 1 ± 02(k) .

	

(28)
The accepted phase space element given by expression
(15)

Ak/k = AG 1/G'

	

(29)
is related through Eq. (10)

Ok/k = cot 02 00 2	(30)

to the angular dependencies . Thus

OG'
AO =2

G1
tan 0 2 i102=2"1eff*

	

(31)

A mosaic spread y7eff would give the same accepted
phase space element than the gradient crystal . Note,
however, that the reflected phase space elements would
be very different in shape .

In the previous chapters, the angular resolutions for
a double crystal diffractometer (powder diffractome-
ter) with a mosaic or gradient crystal as a monochro-
mator has been derived by simple geometric considera-
tions in polar coordinates . The final beam divergencies
I AO I are given by Eq . (23) for both cases and they are
plotted in Fig. 9 for several values of 0 1 E

11 . STATE OF THEART

scattered by G2 = -G' back into k 2 =k; and

0(k) =0 . (26)

Thus with Eq . (23)

AO = 0 . (27)
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G,/G l

Fig. 9. Total beam divergencies 10O I of wave vectors passing
through a mosaic-mosaic or gradient-mosaic double crystal
setup and plotted against the ratio GZ/G1 of the reciprocal
lattice vectors. Graphs for Bragg angles O' of 60°, 45°, 30°
and 15° are given by dotted, continuous, short dashed and
long-short dashed lines, respectively . The curves have been
calculated for an effective mosaic spread of 17 = 0.25°. The
solutions for the dispersive and the non-dispersive setups are
distinguished on the left (++) and on the right (+-) side,

respectively .

{60°, 45°, 30°, 15°} and 17 = 77eff = 0.25° . The curves in-
volving the gradient crystal have a minimum at GZ = 0
and are symmetric on the (+ +) and (+ - ) branches .
The resolution for the mosaic case, however, is worse

by 217 on the (+ + ) branch and it reveals both an

intersection with the resolution of the gradient case

and a minimum at GZ = G' on the (+ - ) branch .

Considering the limit G 1 - 0 it can be shown by a

simple point reflection in the polar diagram, that the
point of intersection GZ/G 1 1 i of the two correspond-
ing resolution curves is located at GZ/G' I ; > 0.5 . The

upper limit is given by considering the backscattering

geometry where GZ/G' I ; - 1 . Generally, the intersec-

tion point lies in the interval GZ/G' I i E[0.5, 1] .

In other words, a mosaic monochromator is very

well suited for a traditional diffractometer where mostly

GZ >_ G' . Here the gradient crystal cannot compete. In

the range Gz/G' E [0 .5, 1], however, the performance

of a gradient compared to a mosaic crystal becomes
competitive and for GZ/G' < 0.5 the gradient case
seems advantageous . This domain is of particular inter-

est to fields of modern science like large scale struc-

tures in condensed matter, superlattices, artificial mul-

tilayers and magnetism.
We also note, that in the case of a gradient-mosaic

setup both (+ +) and (+ - ) branches are equivalent,
whereas for the mosaic-mosaic setup the angular reso-

lution is always better on the ( + - ) branch .

6. The application to a reflectometer

In this chapter, we want to discuss two arguments

related to the design of phase space elements for a

reflectometer. The first demonstrates how to use an
adequate distribution of reciprocal lattice vectors and
the second refers to the powerful tool of the Doppler
effect in the case of neutrons .

The main interest for reflectometers is to measure

the component of the scattering vector Q perpendicu-

lar to a flat sample surface. Ideally, this implies an

incident phase space element with a perpendicular
component restricted to

-1 Q>T -

	

2 (32)

for all wave vectors, whereas the components parallel
to the surface may be extended over a wide distribu-
tion . In principle, such phase space elements are deliv-
ered by any perfect single crystal reflecting a divergent
beam, and the problem would be an easy one if
monochromator crystals with small enough reciprocal
lattice vectors G matching the sample would exist.

However, the difference of G vectors available by

today's monochromator materials with the Q vectors to

be measured is enormous, i.e . G/Q >- 10 . Artificial

layered structures with well fitted G vectors could

become a promising alternative as a monochromator
on a reflectometer in the future .

6.1 . Engineering arbitrary shapes ofphase space elements

Using the two complementary tools based on longi-
tudinal and transversal (angular) variations of the re-
ciprocal lattice vectors it is possible to engineer any
desired shape for the phase space element by reflec-
tion on an adequate distribution of reciprocal lattice

vectors. For this end the correlation between the angu-

lar and the spatial distribution of G vectors has to be

very well defined.
The construction designed for a reflectometer is

illustrated in Fig. 10 . T represents the component of
the incident wave vectors k? towards the sample, which
is antiparallel to the sample scattering vector Q (Eq.

(32)). An optimal distribution of the wave vectors is

given by the line RR which is perpendicular to T . Their

distribution can be projected back towards the incident

white beam k; which gives the distribution y for the

reciprocal lattice vectors G.
A wave vector which originates in P must end in R .

The half value of the corresponding scattering vector,

G/2, is given by the central point r of the section [PR] .

The same construction can be done for the wave vector
reflected from P to R resulting in r . The curve y
describing the whole G/2 distribution can be obtained
by continuing this construction for all the points of RR .

For an analytical solution, the straight line RR is
given by its polar coordinates (0, k) with

0 = 0, + arccos(T/k),

	

(33)
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ti
Fig . 10. Reconstruction of the distribution curve y of recipro-
cal lattice vectors leading to a given reflected phase space
element RR in which all wave vectors have the same compo-
nent T . Wave vectors ending at P(R) originate from P(P) .
They have been scattered by a vector with its half value

ending at point r(r) on y.

Where (0T , T) denotes the coordinates of T . When G
is expressed by (¢, G), then its orientation is given by

(fi = '-P = ' 10, + arccos(T/k ) }

	

(34)

and the length distribution correlates by Eq. (7) to give

G = 2k cos 0.

	

(35)

The curve y plotted in Fig. 10 has been calculated in
this way.

This distribution of reciprocal lattice vectors could
be realized by a lamella monochromator [9] . A gradient
crystal has to be cut into slices along its gradient and
each slice has to be inclined in accordance with its
absolute value of its mean scattering vector .

6.2. Diffraction on a moving gradient crystal

In the following, it will be shown, that the desired
phase space element for a reflectometer can be con-
structed using the transversal Doppler effect on mov-
ing gradient crystals .

The accepted phase space element near A in Fig.
11 is reflected by the gradient crystal towards B. The
end points of the reflected wave vectors lie on a
straight line BS which intersects the line of incidence
AS at point S. The interesting T is defined by the
perpendicular from the origin O to BS .

For the calculation of r it is convenient to split the
crystal velocity V into its components parallel and
perpendicular to the reciprocal lattice vector G:

V=Y, +V1 ,

	

with VL -G ---0.

	

(36)

0 is the orientation angle of G in the polar coordinate
system, and 4(ASO') =(h and 4(O'SB) = 0 with

sin (b = V, 10S

	

(37)

Evidently r depends only on the transversal Doppler
component V1 , i.e . the velocity component parallel to
the scattering crystal planes . The effect is most impor-
tant for backscattering geometry where = 0 and it
vanishes in forward scattering geometry .

The principal information from a reflectometer re-
lates to Q scans corresponding to a variation of r. Eq.
(39) implies that this can be done by varying V1 alone.
In this case the phase space element keeps its desired
orientation parallel to the sample surface and it can be
moved along Q with no loss in resolution.

As an example, k = 2.5 X- ' is reflected from a
Si[111] crystal (G = 2.0 t1-1 ) and the (maximal) mo-
mentum transfer is Q = 0.5 X-1. This requires a (maxi-
mal) crystal velocity of Vl = 0.31 X - ' or vc = 195
m/s.

The reflection on a gradient crystal moving parallel
to G, i.e . V1 = 0 and V, * 0, is elastic . Then, the
accepted phase space element is defined by an effec-
tive reciprocal lattice vector

Geff = G + 2VII ,

	

(40)
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Fig . 11 . The construction shown corresponds to a reflection
on a gradient crystal moving with a velocity V suited for a
reflectometer layout. All wave vectors ending near B all have
the same component r with regard to the origin at rest O.
Wave vectors k ; are scattered by G into kf . The accepted and
reflected phase space elements are on straight lines AS and
BS, respectively, which intersect the symmetry point S. Ac-
cording to the text r can be expressed as a function of the
orientation angle ¢ of G and the velocity component V1

perpendicular to G.

11 . STATE OF THE ART

and

sin 20= ,r/OS . (38)

Combining these two relations gives

r=2V1 cos (b . (39)
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whereas its distribution width

	

AGeff = AG

	

remains
constant, thus

AGeff AG

Geff

	

G±2V11 .

Alternatively, one could imagine to use moving per-
fect crystals in a divergent beam for a reflectometer .
Then an appropriate crystal velocity resulting in a
small Geff could provide an appropriate shape for the
incident phase space element. For small Q, however,
V11 - G12 and the crystal velocity should be in the
order of 630 m/s for a Si[111] reflection, which largely
exceeds the above value for a gradient crystal .

However, the longitudinal Doppler effect is rou-
tinely applied on backscattering spectrometers [10,11],
where a moving monochromator selects a neutron en-
ergy depending on its instantaneous velocity .

6.3 . Results for the reflectometer
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The comparison between gradient and mosaic crys-
tal monochromators in section 5 clearly favors a gradi-
ent crystal for an application on a reflectometer . The
resolution from its phase space element, however, be-
comes best for a sample scattering vector Q - 0. The
ideal shape for the phase space elements and two
construction methods have been demonstrated . The
first method uses an adequate distribution of recipro-
cal lattice vectors to obtain the best resolution for a
finite Q. However, there remains the problem of scan-
ning the Q range over one or two orders of magnitude
while maintaining optimized conditions . This problem
can be overcome easily by moving gradient crystals .

The reflectivity increases by a factor v which is the
ratio of the total AG to the natural width of reflection
AG p as given by the dynamical theory of diffraction
[12,131 :

P = AG/AG, .

	

(42)

Gradient crystals made by a Si, _.Ge, composition
gradient may theoretically rise to AG/G < 4 X 10 -2 .
However they are just entering into reality [14] . Gain
factors of 10 3 can be expected with AG p/G = 1 .4 X
10-6 for neutrons with k = 2.5 A` and using the [220]
reflection .

Looking for the angular divergence of the incident
beam to the gradient crystal, it should be well colli-
mated because it leads to a finite thickness of the
phase space element and thus limits the resolution of
the instrument .

7. Summary

A powerful method has been demonstrated to de-
scribe and to optimize the performance of crystal
diffractometers . Starting from a description of the scat-
tering process on one crystal (the monochromator), the
treatment has been extended to double crystal setups,
where the sample represents the second crystal . The
estimated performance of monochromators made from
gradient crystals or mosaic crystals depends on the
scattering geometry and on the ratio of the scattering
vectors at the monochromator crystal and at the sam-
ple. The Doppler effect has been considered as an
additional and potentially very important degree of
freedom to create optimized shapes of phase space
elements . These considerations have been applied for
the particular case of a neutron reflectometer, where a
slim, but highly inclined resolution element is desir-
able .
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