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Observation of a sample-dependent 37 K anomaly
on the lattice parameters of strontium titanate
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Abstract. – The lattice parameters of tetragonal strontium titanate are determined to about
1 part in 106 with penetrating X-rays. While no peculiarity is detected in a bulk sample, a
distinct anomaly at 37 K is observed in an optically polished thin platelet derived from the same
single crystal. This suggests that the anomaly is related to a high density of dislocations. A
possible mechanism is that dislocations stabilize transverse antiphase boundaries which undergo
a ferroelectric transition near 37 K. If so, this transition stresses the boundaries which then
strain the bulk leading to the observed anomaly.

The perovskites, ABO3, form a large family of compounds with a rich variety of properties
finding many applications, in particular dielectric ones. Strontium titanate, SrTiO3, is often
considered as the paradigm of perovskites. It is cubic at room temperature (T ) and the ionic
radii ideally match the structure, the tolerance factor [1] being equal to 1 to better than 1%.
The interest in perovskites does not lie in perfect cubic structures, but rather in the many
instabilities that the structure is prone to. Considering crystalline —or ferroic— changes in
pure compounds, the instabilities are mainly of two types: i) the ferrodistortive ones that
preserve the number Z of molecular units per primitive cell, and ii) the antiferrodistortive
(AFD) ones for which Z is multiplied by an integer greater than 1. SrTiO3 exhibits both types
of instabilities. It remains cubic with Z = 1 down to Ta

∼= 105 K, where it first undergoes an
AFD transition with cell doubling [2]. The latter results from alternate rotations of the quite
rigid TiO6 octahedra around one of the three cubic axes, which becomes thereby the tetragonal
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axis c. The corresponding phonon instability is at the R-corner of the Brillouin zone [3]. The
order parameter of the transition is the staggered rotation angle φ. For rotations around
the cubic axis î, it will be written φi. In addition, a zone center polar mode (TO1) is also
very soft [4]. In the absence of the competing AFD deformations, the material would become
ferroelectric (FE) around 30 K [5]. Owing to the combined actions of quantum fluctuations
and AFD competition, the FE transition is suppressed [5] and the dielectric constants stabilize
at very high values near liquid-helium T [6].

In 1991, Müller et al. observed by electron paramagnetic resonance (EPR) an additional
transition-like anomaly at Tq ≈ 37 K [7]. New EPR lines or line broadening did not appear at
Tq, just an anomaly in the crystal-field parameters. The origin of this intriguing observation
remained quite debated (see, e.g., [8]). A signature of this effect is absent from many other
measurements performed on large samples of good quality [9, 10]. Therefore, the idea arose
that the anomaly might be set off by the presence of a high density of structural defects such
as those that result from cutting, grinding, or polishing. Indeed, the EPR samples were always
small in at least one dimension, often in the shape of thin polished platelets, perpendicular to
a 〈1 1 0〉 direction and elongated along 〈0 0 1〉. For reasons that are not understood in detail,
such platelets spontaneously orient below Ta with c in their long direction [11]. In this letter,
the lattice constants of a thin polished platelet of SrTiO3 are compared to those of a bulk
sample of the same origin. An anomaly around 37 K is found in the platelet, as already briefly
reported elsewhere [12], while it is absent from the bulk. This suggests that Tq relates to a
high density of dislocations. The available results are consistent with a mechanism implying
a FE transition that should occur in transverse antiphase-domain boundaries related to the
AFD order, as shown in [13]. However, it must be kept in mind that structural defects can
produce many different types of local phase transitions and that these could possibly cause
anomalies in this temperature region.

The experiments were performed at the high-energy beam line ID15A of the European Syn-
chrotron Radiation Facility in Grenoble, France [14]. We used the high-resolution triple-axis
diffractometer equipped with interferometrically controlled goniometers for the monochroma-
tor (M), sample (S), and analyzer (A) axes [15]. The minimum step size on each axis is 0.1′′

of arc. These angles will be designated by ωM, ωS, and ωA, respectively. Our first experi-
ment used a thin polished platelet derived from a high-quality colorless Verneuil boule (Earth
Chemicals, Kobe, Japan). The platelet size is 7 × 2 × 0.28 mm, in the directions c, D, and
D′, respectively. The long direction is a cubic axis which becomes the tetragonal c-axis below
Ta [11], while D and D′ are face diagonals in the (a, b)-plane, a and b being the other cubic
axes. The sample is placed in a He flow cryostat. The X-ray energy is 117 keV, corresponding
to a wavelength λ = 0.106 Å. A non-dispersive diffraction geometry is employed. The 7 1 1
reflections of highly perfect Si crystals are used for M and A. The sample is in transmission
geometry, with c and D′ in the scattering plane. At this energy the absorption in the thin
sample is negligible. Bragg reflections with cubic indices 0 0 5 and 3 3 3 are studied. The
corresponding d-spacings, d005 and d333, give access to the lattice parameters c and a (referred
to the primitive cubic cell, as usual). The Bragg angles on M, S, and A will be designated by
θM, θS, and θA, respectively. Upon tracking a Bragg reflection after T was changed, one first
moves ωS to remain on the reflection peak, and then one scans ωA to measure its position.
Designating by δω and δθ the angular changes from a reference position, it is easily shown that
2δθS = 3δωM − δωA. Hence, the determination of changes in θS is independent of the knowl-
edge of ωS, and thus of temperature effects on the angular position of the long stick holding
the sample in the cryostat. Even if there is appreciable sample mosaicity, scans in ωA can also
be much narrower than those in ωS. With ωM fixed, and for small scattering angles, the Bragg
law gives δd/d ∼= (d/λ)δωA. Scans of ωA for the two Bragg reflections studied here have a full
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Fig. 1 – Relative d-spacings measured with penetrating X-rays on a thin polished platelet of SrTiO3.
∆d005 and ∆d333 are shown on the same vertical scale to emphasize that the anomaly clearly seen on
∆d005 is at best very weak on ∆d333. The full range of ∆d333 is also shown (large open circles) on a
compressed scale (right axis inside). The solid line proportional to φ2 is a guide to the eye.

width below 1′′ of arc. Numerical fitting determines the center of such scans to at least 0.02′′.
With d ∼ 0.7 Å, one finds that a relative accuracy better than 1 part in 106 can in principle
be achieved on δd/d. In practice, judging from the dispersion in the successive data points
upon scanning T , it appears that such a precision is indeed obtained. These measurements
only give the relative d-spacings, i.e. the changes ∆d005 and ∆d333. To express the lattice
parameters and thus the d-spacings in absolute terms, we match our results to a literature
value of the lattice constant sufficiently above Ta, i.e. outside the region of pretransitional
fluctuations, a = c = 3.89559 + 2.61192 × 10−5 × T (K)Å from [16].

Figure 1 shows ∆d005(T ) and ∆d333(T ) obtained in two separate runs: d005 is simply
proportional to c, d005 = c/5, while d333 mostly depends on a, d333 = 1/(3

√
2/a2 + 1/c2) ∼=

a/5.2 in the cubic phase. A run consists in cooling the platelet to liquid-He T , and then
raising T in small steps. After thermalization, ωS is scanned to find the maximum of the
selected Bragg reflection, and then ωA is measured across the reflection which amounts to
a longitudinal scan of the Bragg peak. The measurement is automated and takes about 15
minutes per step. It should be noted that indeed we found that the platelet spontaneously
orients with c in its longest dimension [11]. Additional Bragg reflections that would arise from
ferroic twins were always very weak in ωS-scans compared to the main Bragg peaks. As a guide
to the eye, a curve whose T -dependence is that of φ2(T ) determined by EPR [17] is drawn
through ∆d005. It follows ∆d005(T ) quite well from Ta down to Tq. This curve emphasizes the
anomalous increase of c below Tq. This observation was reproduced in two separate runs [10].
We only show here the second of these runs, taken with finer T steps. The anomaly clearly
observed on c(T ) is not obvious on ∆d333(T ). Using the procedure described at the end of the
previous paragraph, the absolute spacings were determined to be d005 = ∆d005 + 0.77966 Å
and d333 = ∆d333 + 0.7499 Å. From these two spacings we calculate the tetragonal distortion,
εt = (c/a − 1) shown with triangles in fig. 2b. To obtain εt, a smooth interpolation was used
for ∆d333(T ), as the T steps were not identical for both spacings.

A second experiment was performed on a bulk sample derived from the same Verneuil
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Fig. 2 – (a) Results on the bulk sample: the open dots show the tetragonal distortion εt on an absolute
scale while the full dots are the scattering intensities of the 13/2 11/2 1/2 superlattice reflection in
relative units. The solid line is a fit of εt following the same procedure as in [19]. The inset illustrates
an ωS-scan obtained at 10.4 K, with a twin pair indexed BX+ and C. (b) εt measured on the
platelet (triangles) compared to the bulk sample (open dots). (c) The difference between these two
determinations of εt on an expanded ordinate.

boule. The sample was carefully cut in the shape of a cylinder of 4 mm diameter and 4 mm
height. The surface received a fine-grained dull finish. The cylinder axis is along a 〈1 1 0〉
crystallographic direction and it is placed vertically in the experiment. The incident energy is
now 130 keV, corresponding to λ = 0.095 Å. The sample transmission is approximately 50%,
which is acceptable. During this experiment the analyser axis of ID15A was not operational
so that a 2-axis configuration was employed. This gives valuable information in such a case
because a bulk sample develops orientational domains —or twins— below Ta. The principle of
the measurement is to analyze the splitting of the Bragg reflections that results from twining
and which is proportional to εt [18]. Hence, the determination is not affected by a change in
the origin of ωS with T , as only differences in ωS at fixed T values are used. A scan of ωS

across the 0 0 6 Bragg reflection —a transverse scan— is illustrated in the inset of fig. 2a.
Scans with h = k = 0 lead to particularly simple patterns [19]. In this particular case, the pair
of narrow peaks marked C and BX+ can be indexed as forming a twin [10]. The full width at
half-height of the single peaks is below 20′′, indicating a very low mosaicity for this Verneuil
crystal compared to older ones with mosaicities of 30′′ or above [20]. C and B designate grains
with the c-axis exactly along the original 〈0 0 1〉 or 〈0 1 0〉 cubic directions, respectively, while
BX+ is a domain attached to C with c approximately in the cubic 〈0 1 0〉 direction. BX+
and C make contact on a (0 1 1) plane for strain compatibility so that BX+ is rotated by
εt around the cubic 〈1 0 0〉 direction. Scans are performed at increasing values of T and the
five peaks observed are adjusted to Lorentzians. The angular distance between C and BX+
is then used to extract the εt values shown in fig. 2a with open dots.

This determination of εt from the twinning angle is remarkably similar to literature data
obtained with 3-axis measurements of the bulk [19]. This is seen by fitting our εt data
above 35 K with the quantum-corrected Landau expression for φ2 taken from [21], also used
in [19]. This leads to the solid line drawn through the points in fig. 2a, with parameters
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Tc
qm = 111.8 K and η = 0.60, fully compatible with those reported in [19]. Interestingly, this

allows to estimate the mean scatter of our data points which is only ∼ 1.6 × 10−6, nearly as
good as found in the 3-axis measurement reported above. The departure of the data from the
fitted line below 35 K, quantitatively similar to [19], should not be mistaken as evidence for a
“novel phase” as presented there. Indeed there are many reasons why this simple theory for
φ2 might not agree with εt with such a high precision. Firstly, εt can easily depart from φ2

since the mean thermal expansion in the AFD phase is as large as the strains produced by the
transition. Thermal expansion need not be the same along a and c and it can contribute to
c-a. Secondly; ref. [21] only takes into account one effective soft frequency, while it is an entire
soft-phonon sheet which develops a non-trivial shape at low T . It is well known that it is for
this reason that the Barrett formula for the quantum saturation of the dielectric constant [22]
is only approximate [23]. Finally, the expression used in [19] stops at the fourth-order Landau
coefficient. If the sixth-order term is included, the fit down to 4 K becomes excellent as shown
by the first author of [19] in [24]. Thus, we rather believe that the shape of εt shown in
fig. 2a, and in [19] for many other bulk samples, provides no evidence for any anomaly at Tq.
To confirm this view, we also checked on our bulk sample the temperature dependence of the
intensity of a superlattice reflection. The integrated intensity of the 13/2 11/2 1/2 reflection is
shown by solid dots in fig. 2a. Its structure factor depends only on the oxygen displacements
and it is directly proportional to φ2. On heating, the intensity falls somewhat faster than
φ2 as the Debye-Waller factor gives a very substantial reduction, e.g. exp[−2W ] ∼ 0.6 near
50 K [10, 25]. The structure factor is also extremely sensitive to the tetragonal orientation
—i.e. to the order of the Miller indices h k l— so that a minute rearrangement of domains
can easily produce the effects seen near 15 K and 50 K. However, there is no obvious anomaly
around 37 K. Hence, except for an unlikely coincidence, neither the Bragg intensity nor the
oxygen motions leading to the large Debye-Waller factor are sharply anomalous at Tq.

Figure 2b shows that our two separate determinations of εt remarkably agree above Tq,
confirming again the quality of our 2-axis measurement. However, the curves progressively
separate below Tq. To better see this, the εt(T ) of the bulk sample is adjusted to a fourth
degree polynomial in T giving an excellent fit and the result is subtracted from εt(T ) for the
platelet. The difference, δεt, is shown in fig. 2c. A small noisy background is observed between
Ta and Tq. It is difficult at this stage to assert whether this is real or due to systematic errors.
The high noise in that region could also relate to the relatively high slope, dεt(T )/dT . Below
Tq a significant difference develops, with a peak around 30 K, and it then grows almost linearly
down to the smallest values of T . The same general features were observed for the other ∆d005

measurement. The peak around 30 K showed some differences between the two ∆d005 runs,
being somewhat bigger in the first one.

These observations suggest that a phase-transition–like phenomenon is indeed taking place
in the platelet at Tq, while it does not occur —or not to the same extent— in the bulk. It
is natural to invoke an effect in relation with its high optical polish. This polish, obtained
with abrasive slurries of progressively finer grain, is required to orient platelets in the tetrag-
onal phase [11]. Thus, the effect most probably pertains to dislocations. A high density of
dislocations, approaching 1010 cm−2, was found near surfaces of SrTiO3 that had received a
particularly gentle mechanochemical polish [26,27]. With our normal polish, dislocations will
presumably affect a much deeper region of the material, possibly the entire platelet thickness.
Polishing produces slip planes parallel to the surface. It is already known that the Burgers
vectors b in SrTiO3 are mostly oriented along 〈1 1 0〉 directions [26]. Hence, for our particular
platelet orientation, one expects a substantial concentration of edge dislocations with their
cores roughly parallel to c, i.e. in the slip planes and perpendicular to b. Near a core, the re-
gion containing the “extra” lattice plane is under high compression, raising the AFD transition
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above room T [26]. The opposite region —the one with the “missing” plane— is under strong
extension, which suppresses the AFD transition. The latter region is also the seed for an an-
tiphase boundary (APB) as around the core the phase of φ3 changes by π owing to b. Hence,
such dislocations do stabilize transverse APBs which could then extend far into the bulk.

Antiphase-domain boundaries are planar defects in the phase of φ. These are too costly
in energy to be abundant on a mere statistical basis in structurally perfect samples [13, 28].
They can be of two extreme types, longitudinal (or easy) that are perpendicular to c and
transverse (or hard) that are parallel to c [13]. In spite of their high energy, the former have
been observed to be extremely frequent —on the near atomic scale— in very thin samples
used in transmission electron microscopy [26]. Hard boundaries are a few times more energetic
than easy ones. They are quite thick, of the order of 100 Å, and of the Néel type [13]. This
means that the vector φ is essentially perpendicular to the boundary plane in the middle of the
APB. This strongly favors the appearance of ferroelectricity. The reasons can be understood
from [5]. Separating the effects of pure octahedra rotations from these of pure AFD strains
on the soft FE-mode frequencies ωa and ωc, it was found that in the bulk it is the rotation
around c that raises considerably the frequency of the soft mode ωc while it decreases ωa,
and that elongations along c decrease ωc [5]. In the middle of a hard APB, there is indeed
an elongation along 3̂ which is imposed by the AFD strains in the adjacent domains. The
absence of rotation around 3̂, the presence of rotation perpendicular to 3̂, and this strain, all
concur to produce a FE transition in the boundary with the polarization P along 3̂. The
calculations in [13] show that this happens between 35 and 40 K, corresponding remarkably
well with the value Tq found experimentally.

The FE transition in the boundary generates stresses in its plane: an expansion along
c and a much smaller compression in the perpendicular direction [12, 13]. The equilibration
of these stresses by the bulk of the sample produces additional elongations, written δc for
c and δa for a, which grow with Tq − T in mean-field theory. Designating by t the mean
boundary thickness and by L their mean separation, one estimates from the size of δc that
t/L ∼ 0.1 or that about 10% of the sample volume must be occupied by hard APBs [12].
This gives L ∼ 1000 Å, which is consistent with the expected dislocation density. The effect
on d333, that we write δd333, is approximately proportional to 2δa + δc and therefore quite a
bit weaker than δc because δa ∼ −δc/4. We estimate δd333 ∼ 0.1δd005 which explains why
no effect near Tq can be recognized on ∆d333 in fig. 1. The peak observed on δεt around
30 K is not understood in detail. It might be due to a rearrangement of domains owing to
forces between walls associated with their polarization. This might explain that it does not
necessarily reproduce well from measurement to measurement, as it may depend on sample
history, or also on the particular region of the sample explored by the X-ray beam.

The main conclusion of this study is that a lattice anomaly on c is observed on a thin
polished platelet while it seems absent from a bulk sample derived from the same crystal.
This anomaly starts below 37 K, a value remarkably close to the Tq of [7]. It can be accounted
for by a ferroelectric transition taking place inside antiphase-domain boundaries [13] that are
stabilized by edge dislocations. Although this might provide the clue for Tq, it is clear that our
specific model remains speculative at this stage. The main issue is whether a sufficient density
of hard APBs is effectively present. Other local transitions could be caused by dislocations,
even superconducting ones along dislocation cores [29] which might be better in line with the
initial proposal [7]. It is however difficult to picture how a superconducting transition in dislo-
cation cores (which are essentially one-dimensional objects) could produce a lattice anomaly
of the size observed. On the other hand, former explanations for Tq —which invoked the
quantum phase coherence of an unknown bulk excitation— seem rather unlikely in a situation
where the number of low-frequency branches is so very high, as already discussed in [8]. We
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hope that our observations will stimulate more detailed experimental investigations of: i) the
dislocation distribution produced in polishing thin SrTiO3 platelets, ii) the mechanism leading
to their spontaneous tetragonal orientation, iii) the formation and stabilization of antiphase
boundaries, and iv) the ferroelectric transition in hard boundaries.
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